67 research outputs found

    Hydrogen maser frequency standard

    Get PDF
    The fundamental theoretical limitations of the maser, systematic processes that cause instability, and some aspects of recently designed masers are described. A design for field use that has evolved from the development of the space borne maser is presented. The performance of this type of maser is close to theoretical limits imposed by thermal noise. Further developments of smaller masers for space and terrestrial use and recent work on masers operating at low temperatures is also discussed

    Atomic hydrogen for low temperature atomic hydrogen masers and in-vacuum dissociators for VLG-11 series masers

    Get PDF
    The operation of a cryogenically-cooled hydrogen maser using an RF plasma dissociator operating at liquid nitrogen temperature (77K) in confunction with a state selector magnet whose dimensions are suitable for slow atoms is studied. The focusing characteristics for a hexapole state selector magnet with maximum fields at the pole tips, provide a maximum acceptance angle for atoms at the most probable velocity in the beam. By thermally isolating the RF circuitry from the dissociator glassware, only dielectric losses in the glass and the energy coupled to the plasma will result in the boil-off of liquid nitrogen. It is estimated that this is about one watt and thus a loss rate of approximately .022 liters pr hour is anticipated

    Study of the dissociation of molecular hydrogen

    Get PDF
    Dissociators used to obtain an RF plasma discharge for hydrogen masers and the test system used for operation and evaluation of the dissociators are described. A compact sorption cartridge using a graphite matrix is tested as part of a hydrogen scavenging system. Testing of a vacuum enclosed hydrogen dissociator suitable for long term operation in space is described

    Satellite time and frequency transfer (STIFT)

    Get PDF
    The concept of placing a hydrogen maser high stability clock in Earth orbit to provide accurate time and frequency comparisons worldwide to major timing centers and to a large number of radio observatory antenna sites involved in VLBI measurements was studied. The proposal was chiefly directed toward studies and initial hardware designs for time comparisons between hydrogen maser frequency standards and to modifications of the hydrogen maser for long-term use in space

    System automatically tunes hydrogen masers

    Get PDF
    Automatic tuning system permits frequency synchronization between two hydrogen masers. System matches spaceborne clock performance with that of ground-based clock to test red shift theory. This system, used in conjunction with radio astronomy for long-baseline interferometer experiments, serves as a tool for investigation of distant universe phenomena

    A method of eliminating hydrogen maser wall shift

    Get PDF
    Maser output frequency shift was prevented by storage bulb kept at temperature at which wall shift is zero and effects of bulb size, shape, and surface texture are eliminated. Servo system is shown, along with bidirectional counter

    Hydrogen-maser time and frequency standard at Agassiz Observatory

    Get PDF
    Installation of hydrogen maser for very long baseline interferometr

    Gravitational redshift space-probe experiment

    Get PDF
    A Scout D rocket was launched from Wallops Island, Virginia, carrying an atomic hydrogen maser oscillator system as the payload. The frequency of signals from the oscillator was monitored on the ground at Merritt Island, Florida, by using two hydrogen masers as comparison oscillators. The first-order Doppler shift in the signals was eliminated by a go-return transponder link to the payload, and the resulting data, representing the relativistic shifts, were recovered and recorded. The objective was to measure directly the effect of gravitational potential on the frequency of an atomic hydrogen maser assuming it to be a 'proper' clock. A gravitational effect amounting to some 4.5 parts in 10 to the 10th power was measured with an oscillator having a stability better than 1 part in 10 to the 14th power. Therefore, to make the best possible use of the oscillator, all frequency shifts at the 2 to 5 X 10 to the -15 power level in delta f/f in the system must be accounted for. This includes all the phase variations that can cause such a shift to appear. The experiment, the data available and the manner in which they were processed, and the results are described

    Tunable cavity resonator with ramp shaped supports

    Get PDF
    A cavity for a hydrogen maser is described consisting of three parts which provide highly stable mechanical and thermal expansion characteristics for the cavity and ease of tuning. The three parts which are made of a glass ceramic material having a very small thermal expansion coefficient (1) a top plate, (2) a cylinder with three interrupted helical ramps at its bottom, and (3) a base which includes a bottom plate and three ramp lugs on which the helical ramps of the cylinder rest when the cylinder is placed on the base with the bottom plate in the cylinder. Cavity tuning is achieved by rotating the cylinder and thereby raising or lowering it on the base, which results in changing the cylinder volume by changing the distance between the bottom and top plates

    Atomic Hydrogen Maser for Space Vehicle Application, Phase 2 Final Report

    Get PDF
    Thermal design of hydrogen maser and wall coatings for maser bul
    corecore